instance
OmegaCompletePartialOrder.instPartialOrderOption_quasiBorelSpaces
{α : Type u_1}
[OmegaCompletePartialOrder α]
:
PartialOrder (Option α)
Bottom-order on options: none is bottom, some is ordered pointwise.
Equations
- One or more equations did not get rendered due to their size.
noncomputable def
OmegaCompletePartialOrder.firstSomeIndex
{α : Type u_1}
[OmegaCompletePartialOrder α]
(c : Chain (Option α))
(h : ∃ (n : ℕ) (x : α), c n = some x)
:
Pick any index where a chain hits some
Equations
Instances For
noncomputable def
OmegaCompletePartialOrder.firstSomeValue
{α : Type u_1}
[OmegaCompletePartialOrder α]
(c : Chain (Option α))
(h : ∃ (n : ℕ) (x : α), c n = some x)
:
α
A witness that the chain hits some at firstSomeIndex
Equations
Instances For
theorem
OmegaCompletePartialOrder.firstSome_spec
{α : Type u_1}
[OmegaCompletePartialOrder α]
(c : Chain (Option α))
(h : ∃ (n : ℕ) (x : α), c n = some x)
:
noncomputable def
OmegaCompletePartialOrder.tailChain
{α : Type u_1}
[OmegaCompletePartialOrder α]
(c : Chain (Option α))
(h : ∃ (n : ℕ) (x : α), c n = some x)
:
Chain α
Chain of underlying values after the first some, padding with the first value
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
OmegaCompletePartialOrder.tailChain_apply
{α : Type u_1}
[OmegaCompletePartialOrder α]
(c : Chain (Option α))
(h : ∃ (n : ℕ) (x : α), c n = some x)
(k : ℕ)
:
(tailChain c h) k = match c (firstSomeIndex c h + k) with
| some x => x
| none => firstSomeValue c h
noncomputable def
OmegaCompletePartialOrder.optionωSup
{α : Type u_1}
[OmegaCompletePartialOrder α]
(c : Chain (Option α))
:
Option α
ω-supremum on Option α: either none for an all-bottom chain,
or some of the ω-supremum of the tail of defined elements.
Equations
- OmegaCompletePartialOrder.optionωSup c = if h : ∃ (n : ℕ) (x : α), c n = some x then some (OmegaCompletePartialOrder.ωSup (OmegaCompletePartialOrder.tailChain c h)) else none
Instances For
noncomputable instance
OmegaCompletePartialOrder.instOption_quasiBorelSpaces
{α : Type u_1}
[OmegaCompletePartialOrder α]
:
ω-supremum on Option α: either none for an all-bottom chain,
or some of the ω-supremum of the tail of defined elements
Equations
- OmegaCompletePartialOrder.instOption_quasiBorelSpaces = { toPartialOrder := inferInstance, ωSup := OmegaCompletePartialOrder.optionωSup, le_ωSup := ⋯, ωSup_le := ⋯ }