Documentation

QuasiBorelSpaces.OmegaCompletePartialOrder.Option

Equations
  • One or more equations did not get rendered due to their size.
theorem OmegaCompletePartialOrder.Option.ωScottContinuous_elim {A : Type u_1} [OmegaCompletePartialOrder A] {B : Type u_2} {C : Type u_3} [OmegaCompletePartialOrder B] [OmegaCompletePartialOrder C] [OrderBot C] {f : AOption B} (hf : ωScottContinuous f) {g : C} (hg : g = := by rfl) {h : ABC} (hh : ωScottContinuous fun (x : A × B) => h x.1 x.2) :
ωScottContinuous fun (x : A) => (f x).elim g (h x)
theorem OmegaCompletePartialOrder.Option.ωScottContinuous_map {A : Type u_1} [OmegaCompletePartialOrder A] {B : Type u_2} {C : Type u_3} [OmegaCompletePartialOrder B] [OmegaCompletePartialOrder C] {f : ABC} (hf : ωScottContinuous fun (x : A × B) => match x with | (x, y) => f x y) {g : AOption B} (hg : ωScottContinuous g) :
ωScottContinuous fun (x : A) => Option.map (f x) (g x)
theorem OmegaCompletePartialOrder.Option.ωScottContinuous_bind {A : Type u_1} [OmegaCompletePartialOrder A] {B : Type u_2} {C : Type u_3} [OmegaCompletePartialOrder B] [OmegaCompletePartialOrder C] {f : ABOption C} (hf : ωScottContinuous fun (x : A × B) => match x with | (x, y) => f x y) {g : AOption B} (hg : ωScottContinuous g) :
ωScottContinuous fun (x : A) => (g x).bind (f x)
theorem OmegaCompletePartialOrder.Option.ωScottContinuous_bind' {A : Type u_1} [OmegaCompletePartialOrder A] {B : Type u_2} [OmegaCompletePartialOrder B] {C : Type u_2} [OmegaCompletePartialOrder C] {f : ABOption C} (hf : ωScottContinuous fun (x : A × B) => match x with | (x, y) => f x y) {g : AOption B} (hg : ωScottContinuous g) :
ωScottContinuous fun (x : A) => g x >>= f x