Documentation

QuasiBorelSpaces.OmegaCompletePartialOrder.Chain.Option

A chain of nones.

Equations
Instances For

    Lifts a chain of values to a chain of somes, with the specified number of leading nones.

    Equations
    Instances For
      noncomputable def OmegaCompletePartialOrder.Chain.Option.project {A : Type u_1} [Preorder A] (c : Chain (Option A)) (h : ∃ (n : ), (c n).isSome = true) :

      Given a proof that a Chain contains a some value, we can construct a Chain that only contains the some values.

      Equations
      Instances For
        @[simp]
        theorem OmegaCompletePartialOrder.Chain.Option.project_coe {A : Type u_1} [Preorder A] (c : Chain (Option A)) (h : ∃ (n : ), (c n).isSome = true) (n : ) :
        (project c h) n = have this := ; (c (Nat.find h + n)).getD this.some

        Turns a Chain of Options into an equivalent Optional Chain.

        Equations
        Instances For
          theorem OmegaCompletePartialOrder.Chain.Option.distrib_cases {A : Type u_1} [Preorder A] {p : Chain (Option A)Prop} (none : p none) (some : ∀ (i : ) (c : Chain A), p (some i c)) (c : Chain (Option A)) :
          p c