Documentation

QuasiBorelSpaces.OmegaCompletePartialOrder.Basic

Basic properties of ω-complete partial orders #

This file is a placeholder for lemmas about OmegaCompletePartialOrder. As the library grows, compatibility helpers specific to this project can be added here.

theorem OmegaCompletePartialOrder.ωScottContinuous_mk {A : Type u_1} {B : Type u_2} {C : Type u_3} [OmegaCompletePartialOrder A] [OmegaCompletePartialOrder B] [OmegaCompletePartialOrder C] {f : AB} {g : AC} (hf : ωScottContinuous f) (hg : ωScottContinuous g) :
ωScottContinuous fun (x : A) => (f x, g x)
theorem OmegaCompletePartialOrder.Measure.ωScottContinuous_lintegral {A : Type u_1} {B : Type u_2} [OmegaCompletePartialOrder A] [OmegaCompletePartialOrder B] [MeasurableSpace B] {f : ABENNReal} (hf₁ : ωScottContinuous fun (x : A × B) => f x.1 x.2) (hf₂ : ∀ (a : A), Measurable (f a)) (μ : MeasureTheory.Measure B) :
ωScottContinuous fun (x : A) => ∫⁻ (y : B), f x y μ
theorem OmegaCompletePartialOrder.ωScottContinuous_ite {A : Type u_1} {B : Type u_2} [OmegaCompletePartialOrder A] [OmegaCompletePartialOrder B] {f : AProp} (hf : ∀ {x y : A}, x yf x = f y) [DecidablePred f] {g : AB} (hg : ωScottContinuous g) {h : AB} (hh : ωScottContinuous h) :
ωScottContinuous fun (x : A) => if f x then g x else h x