Documentation

QuasiBorelSpaces.MeasureTheory.Randomization

noncomputable def MeasureTheory.Measure.normalize {r : } (x : (Set.Ico 0 r)) :

normalize is the canonical injection from [0, r) to [0, 1].

Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.

    The function det μ is a function such that volume.map (det μ) = μ.

    Equations
    Instances For
      theorem MeasureTheory.Measure.measurable_det {A : Type u_2} {B : Type u_1} [MeasurableSpace A] [MeasurableSpace B] [StandardBorelSpace B] {μ : AMeasure B} [∀ (x : A), IsProbabilityMeasure (μ x)] ( : Measurable μ) {i : AunitInterval} (hi : Measurable i) :
      Measurable fun (x : A) => (μ x).det (i x)
      noncomputable def MeasureTheory.Measure.detf {A : Type u_1} [MeasurableSpace A] [StandardBorelSpace A] (μ : Measure A) [IsFiniteMeasure μ] (r : (Set.Ico 0 (μ Set.univ).toReal)) :
      A

      The function detf μ is a function such that volume.map (detf μ) = μ.

      Equations
      Instances For