noncomputable instance
MeasureTheory.Measure.instMeasureSpaceElemRealIcoOfNat_quasiBorelSpaces
(r : ℝ)
:
MeasureSpace ↑(Set.Ico 0 r)
Equations
- One or more equations did not get rendered due to their size.
@[simp]
noncomputable def
MeasureTheory.Measure.det
{A : Type u_1}
[MeasurableSpace A]
[StandardBorelSpace A]
(μ : Measure A)
[IsProbabilityMeasure μ]
:
↑unitInterval → A
The function det μ is a function such that volume.map (det μ) = μ.
Equations
Instances For
theorem
MeasureTheory.Measure.measurable_det
{A : Type u_2}
{B : Type u_1}
[MeasurableSpace A]
[MeasurableSpace B]
[StandardBorelSpace B]
{μ : A → Measure B}
[∀ (x : A), IsProbabilityMeasure (μ x)]
(hμ : Measurable μ)
{i : A → ↑unitInterval}
(hi : Measurable i)
:
Measurable fun (x : A) => (μ x).det (i x)
@[simp]
theorem
MeasureTheory.Measure.eq_det_volume
{A : Type u_1}
[MeasurableSpace A]
[StandardBorelSpace A]
(μ : Measure A)
[IsProbabilityMeasure μ]
:
noncomputable def
MeasureTheory.Measure.detf
{A : Type u_1}
[MeasurableSpace A]
[StandardBorelSpace A]
(μ : Measure A)
[IsFiniteMeasure μ]
(r : ↑(Set.Ico 0 (μ Set.univ).toReal))
:
A
The function detf μ is a function such that volume.map (detf μ) = μ.
Instances For
theorem
MeasureTheory.Measure.measurable_detf
{A : Type u_1}
[MeasurableSpace A]
[StandardBorelSpace A]
{μ : Measure A}
[IsFiniteMeasure μ]
:
@[simp]
theorem
MeasureTheory.Measure.eq_detf_volume
{A : Type u_1}
[MeasurableSpace A]
[StandardBorelSpace A]
(μ : Measure A)
[IsFiniteMeasure μ]
: