Documentation

QuasiBorelSpaces.MeasureTheory.Measure

theorem MeasureTheory.Measure.measurable_map' {A : Type u_1} {B : Type u_2} {C : Type u_3} [MeasurableSpace A] [MeasurableSpace B] [MeasurableSpace C] {f : ABC} (hf : Measurable fun (x : A × B) => match x with | (x, y) => f x y) {μ : AMeasure B} (hμ₁ : Measurable μ) [∀ (x : A), IsFiniteMeasure (μ x)] :
Measurable fun (x : A) => map (f x) (μ x)
theorem MeasureTheory.Measure.measurable_apply {A : Type u_1} {B : Type u_2} [MeasurableSpace A] [MeasurableSpace B] {μ : AMeasure B} ( : Measurable μ) (hμ' : ProbabilityTheory.IsSFiniteKernel { toFun := μ, measurable' := }) {i : ASet B} (hi : Measurable fun (x : B × A) => x.1 i x.2) :
Measurable fun (x : A) => (μ x) (i x)
noncomputable def MeasureTheory.Measure.mapOption {A : Type u_1} {B : Type u_2} [MeasurableSpace A] [MeasurableSpace B] (f : AOption B) (μ : Measure A) :

The push-forward of a measure by a partial function.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem MeasureTheory.Measure.lintegral_mapOption {A : Type u_1} {B : Type u_2} [MeasurableSpace A] [MeasurableSpace B] {k : BENNReal} (hk : Measurable k) {f : AOption B} (hf : Measurable f) (μ : Measure A) :
    ∫⁻ (b : B), k b mapOption f μ = ∫⁻ (a : A), (f a).elim 0 k μ