theorem
MeasureTheory.measurable_cases
{A : Type u_1}
{B : Type u_2}
[MeasurableSpace A]
[MeasurableSpace B]
{I : Type u_3}
[Countable I]
{ix : A → I}
{f : I → A → B}
(hix : Measurable ix)
(hf : ∀ (i : I), Measurable (f i))
:
Measurable fun (x : A) => f (ix x) x
theorem
MeasureTheory.measurable_decide
{A : Type u_1}
[MeasurableSpace A]
{p : A → Prop}
[inst : DecidablePred p]
(hp : Measurable p)
:
Measurable fun (x : A) => decide (p x)
theorem
MeasureTheory.measurable_dite
{A : Type u_1}
{B : Type u_2}
[MeasurableSpace A]
[MeasurableSpace B]
{p : A → Prop}
(hp₁ : Measurable p)
(hp₂ : DecidablePred p)
{f : (x : A) → p x → B}
(hf : Measurable fun (x : Subtype p) => f ↑x ⋯)
{g : (x : A) → ¬p x → B}
(hg : Measurable fun (x : { x : A // ¬p x }) => g ↑x ⋯)
:
Measurable fun (x : A) => if h : p x then f x h else g x h