Documentation

QuasiBorelSpaces.PreProbabilityMeasure

A precursor to the type of probability measures. Intuitively, a (quasi-borel) probability measure is just a variable applied to a normal probability measure on . A PreProbabilityMeasure holds the underlying variable and probability measure.

Instances For
    theorem QuasiBorelSpace.PreProbabilityMeasure.ext {A : Type u_5} {inst✝ : QuasiBorelSpace A} {x y : PreProbabilityMeasure A} (eval : x.eval = y.eval) (base : x.base = y.base) :
    x = y

    The integral of a function relative to a probability measure.

    Equations
    Instances For

      TODO

      Equations
      Instances For
        @[simp]

        A PreProbabilityMeasure can be constructed from any ProbabilityMeasure on a standard borel space.

        Equations
        Instances For
          Equations
          • One or more equations did not get rendered due to their size.
          theorem QuasiBorelSpace.PreProbabilityMeasure.lintegral_mul_left {A : Type u_1} [QuasiBorelSpace A] (c : ENNReal) {f : AENNReal} (hf : IsHom f) (μ : PreProbabilityMeasure A) :
          lintegral (fun (x : A) => c * f x) μ = c * lintegral f μ
          theorem QuasiBorelSpace.PreProbabilityMeasure.lintegral_mul_right {A : Type u_1} [QuasiBorelSpace A] (c : ENNReal) {f : AENNReal} (hf : IsHom f) (μ : PreProbabilityMeasure A) :
          lintegral (fun (x : A) => f x * c) μ = lintegral f μ * c
          theorem QuasiBorelSpace.PreProbabilityMeasure.lintegral_iSup {A : Type u_1} [QuasiBorelSpace A] (f : AENNReal) (hf₁ : Monotone f) (hf₂ : ∀ (n : ), IsHom (f n)) (μ : PreProbabilityMeasure A) :
          ⨆ (n : ), lintegral (f n) μ = lintegral (⨆ (n : ), f n) μ
          theorem QuasiBorelSpace.PreProbabilityMeasure.lintegral_finset_sum {B : Type u_2} [QuasiBorelSpace B] {A : Type u_5} (s : Finset A) {f : ABENNReal} (hf : bs, IsHom (f b)) (μ : PreProbabilityMeasure B) :
          lintegral (fun (a : B) => bs, f b a) μ = bs, lintegral (f b) μ
          theorem QuasiBorelSpace.PreProbabilityMeasure.measureOf_iUnion_le {A : Type u_1} [QuasiBorelSpace A] {ι : Type u_5} [Countable ι] (μ : PreProbabilityMeasure A) (s : ιSet A) :
          μ.measureOf (⋃ (i : ι), s i) ∑' (i : ι), μ.measureOf (s i)
          @[simp]
          theorem QuasiBorelSpace.PreProbabilityMeasure.setoid_r {A : Type u_1} [QuasiBorelSpace A] (μ₁ μ₂ : PreProbabilityMeasure A) :
          (setoid A) μ₁ μ₂ μ₁ μ₂
          theorem QuasiBorelSpace.PreProbabilityMeasure.equiv_def {A : Type u_1} [QuasiBorelSpace A] (μ₁ μ₂ : PreProbabilityMeasure A) :
          μ₁ μ₂ ∀ {f : AENNReal}, IsHom flintegral f μ₁ = lintegral f μ₂
          theorem QuasiBorelSpace.PreProbabilityMeasure.equiv_def' {A : Type u_1} [QuasiBorelSpace A] (μ₁ μ₂ : PreProbabilityMeasure A) :
          μ₁ μ₂ ∀ {p : Set A}, (IsHom fun (x : A) => x p)μ₁.measureOf p = μ₂.measureOf p

          The type of variables for probability measures.

          Instances For

            Evaluates a Var.

            Equations
            • { eval := φ, base := μ, measurable_base := measurable_base }.apply x✝ = { eval := φ, base := μ x✝ }
            Instances For
              @[simp]
              theorem QuasiBorelSpace.PreProbabilityMeasure.Var.measureOf_mk {A : Type u_1} [QuasiBorelSpace A] (x✝ : ) (φ : →𝒒 A) (μ : MeasureTheory.ProbabilityMeasure ) (measurable_base : Measurable μ) :
              { eval := φ, base := μ, measurable_base := measurable_base }.apply x✝ = { eval := φ, base := μ x✝ }

              Alias of QuasiBorelSpace.PreProbabilityMeasure.Var.apply.eq_1.

              The constant variable.

              Equations
              Instances For

                Precomposition of variables by measurable functions.

                Equations
                Instances For
                  @[simp]
                  theorem QuasiBorelSpace.PreProbabilityMeasure.Var.apply_comp {A : Type u_1} [QuasiBorelSpace A] {f : } (hf : Measurable f) (φ : Var A) (r : ) :
                  (comp hf φ).apply r = φ.apply (f r)
                  noncomputable def QuasiBorelSpace.PreProbabilityMeasure.Var.cases {A : Type u_1} [QuasiBorelSpace A] {ix : } (hix : Measurable ix) (φ : Var A) :
                  Var A

                  Gluing of a countable number of variables.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem QuasiBorelSpace.PreProbabilityMeasure.Var.apply_cases {A : Type u_1} [QuasiBorelSpace A] {ix : } (hix : Measurable ix) (φ : Var A) (r : ) :
                    (cases hix φ).apply r (φ (ix r)).apply r
                    Equations
                    • One or more equations did not get rendered due to their size.
                    theorem QuasiBorelSpace.PreProbabilityMeasure.isHom_def {A : Type u_1} [QuasiBorelSpace A] (φ : PreProbabilityMeasure A) :
                    IsHom φ ∃ (ψ : Var A), ∀ (r : ), φ r ψ.apply r

                    The variable associated with a PreProbabilityMeasure variable.

                    Equations
                    Instances For

                      The measure associated with a PreProbabilityMeasure variable.

                      Equations
                      Instances For
                        theorem QuasiBorelSpace.PreProbabilityMeasure.sub_eq {A : Type u_1} [QuasiBorelSpace A] {φ : PreProbabilityMeasure A} ( : IsHom φ) (r : ) :
                        φ r { eval := subeval φ, base := subbase φ r }
                        theorem QuasiBorelSpace.PreProbabilityMeasure.isHom_lintegral {A : Type u_1} [QuasiBorelSpace A] {B : Type u_2} [QuasiBorelSpace B] {k : ABENNReal} (hk : IsHom fun (x : A × B) => match x with | (x, y) => k x y) {f : APreProbabilityMeasure B} (hf : IsHom f) :
                        IsHom fun (x : A) => lintegral (k x) (f x)
                        theorem QuasiBorelSpace.PreProbabilityMeasure.lintegral_congr {A : Type u_1} [QuasiBorelSpace A] {k : AENNReal} (hk : IsHom k) {μ₁ μ₂ : PreProbabilityMeasure A} ( : μ₁ μ₂) :
                        lintegral k μ₁ = lintegral k μ₂
                        theorem QuasiBorelSpace.PreProbabilityMeasure.measureOf_congr {A : Type u_1} [QuasiBorelSpace A] {p : Set A} (hk : IsHom fun (x : A) => x p) {μ₁ μ₂ : PreProbabilityMeasure A} ( : μ₁ μ₂) :
                        μ₁.measureOf p = μ₂.measureOf p
                        theorem QuasiBorelSpace.PreProbabilityMeasure.isHom_congr {A : Type u_1} [QuasiBorelSpace A] {B : Type u_2} [QuasiBorelSpace B] {f g : APreProbabilityMeasure B} (h : ∀ (x : A), f x g x) :

                        The unit operation, a.k.a. the dirac measure.

                        Equations
                        Instances For
                          @[simp]
                          noncomputable def QuasiBorelSpace.PreProbabilityMeasure.Var.unit {A : Type u_1} [QuasiBorelSpace A] {φ : A} ( : IsHom φ) :
                          Var A

                          The dirac measure, lifted to variables.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]

                            The monadic bind operation for probability measures.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem QuasiBorelSpace.PreProbabilityMeasure.lintegral_bind {A : Type u_1} [QuasiBorelSpace A] {B : Type u_2} [QuasiBorelSpace B] {f : BENNReal} (hf : IsHom f) {g : APreProbabilityMeasure B} (hg : IsHom g) (μ : PreProbabilityMeasure A) :
                              lintegral f (bind g μ) = lintegral (fun (x : A) => lintegral f (g x)) μ
                              theorem QuasiBorelSpace.PreProbabilityMeasure.bind_congr {A : Type u_1} [QuasiBorelSpace A] {B : Type u_2} [QuasiBorelSpace B] {f : APreProbabilityMeasure B} (hf : IsHom f) {g : APreProbabilityMeasure B} (hg : IsHom g) (h₁ : ∀ (x : A), f x g x) {μ ν : PreProbabilityMeasure A} (h₂ : μ ν) :
                              bind f μ bind g ν
                              noncomputable def QuasiBorelSpace.PreProbabilityMeasure.Var.bind {A : Type u_1} [QuasiBorelSpace A] {B : Type u_2} [QuasiBorelSpace B] (f : APreProbabilityMeasure B) (φ : Var A) :
                              Var B

                              The monadic bind, lifted to variables.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                The functorial strength operation.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem QuasiBorelSpace.PreProbabilityMeasure.lintegral_str {A : Type u_1} [QuasiBorelSpace A] {B : Type u_2} [QuasiBorelSpace B] (k : A × BENNReal) (x : A) (μ : PreProbabilityMeasure B) :
                                  lintegral k (str x μ) = lintegral (fun (y : B) => k (x, y)) μ
                                  theorem QuasiBorelSpace.PreProbabilityMeasure.str_congr {A : Type u_1} [QuasiBorelSpace A] {B : Type u_2} [QuasiBorelSpace B] (x : A) {μ₁ μ₂ : PreProbabilityMeasure B} ( : μ₁ μ₂) :
                                  str x μ₁ str x μ₂
                                  noncomputable def QuasiBorelSpace.PreProbabilityMeasure.Var.str {A : Type u_1} [QuasiBorelSpace A] {B : Type u_2} [QuasiBorelSpace B] {φ : A} ( : IsHom φ) (ψ : Var B) :
                                  Var (A × B)

                                  The functorial strength operation, lifted to variables.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    theorem QuasiBorelSpace.PreProbabilityMeasure.Var.apply_str {A : Type u_1} [QuasiBorelSpace A] {B : Type u_2} [QuasiBorelSpace B] {φ : A} ( : IsHom φ) (ψ : Var B) (r : ) :
                                    (str ψ).apply r PreProbabilityMeasure.str (φ r) (ψ.apply r)

                                    The Bernoulli measure.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For