Documentation

QuasiBorelSpaces.OmegaCompletePartialOrder.Sum

ωCPO instance for coproducts #

This file provides the OmegaCompletePartialOrder instance for Sum α β.

Equations
  • One or more equations did not get rendered due to their size.
theorem OmegaCompletePartialOrder.Sum.lt_def {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] (a✝ a✝¹ : α β) :
(a✝ < a✝¹) = Sum.LiftRel (fun (x1 x2 : α) => x1 < x2) (fun (x1 x2 : β) => x1 < x2) a✝ a✝¹
theorem OmegaCompletePartialOrder.Sum.le_def {α : Type u} {β : Type v} [OmegaCompletePartialOrder α] [OmegaCompletePartialOrder β] (a✝ a✝¹ : α β) :
(a✝ a✝¹) = Sum.LiftRel (fun (x1 x2 : α) => x1 x2) (fun (x1 x2 : β) => x1 x2) a✝ a✝¹