ωCPO instance for coproducts #
This file provides the OmegaCompletePartialOrder instance for Sum α β.
noncomputable instance
OmegaCompletePartialOrder.Sum.instSum_quasiBorelSpaces
{α : Type u}
{β : Type v}
[OmegaCompletePartialOrder α]
[OmegaCompletePartialOrder β]
:
OmegaCompletePartialOrder (α ⊕ β)
Equations
- One or more equations did not get rendered due to their size.
theorem
OmegaCompletePartialOrder.Sum.ωSup_def
{α : Type u}
{β : Type v}
[OmegaCompletePartialOrder α]
[OmegaCompletePartialOrder β]
(c : Chain (α ⊕ β))
:
theorem
OmegaCompletePartialOrder.Sum.lt_def
{α : Type u}
{β : Type v}
[OmegaCompletePartialOrder α]
[OmegaCompletePartialOrder β]
(a✝ a✝¹ : α ⊕ β)
:
theorem
OmegaCompletePartialOrder.Sum.le_def
{α : Type u}
{β : Type v}
[OmegaCompletePartialOrder α]
[OmegaCompletePartialOrder β]
(a✝ a✝¹ : α ⊕ β)
:
@[simp]
theorem
OmegaCompletePartialOrder.Sum.ωSup_inl
{α : Type u}
{β : Type v}
[OmegaCompletePartialOrder α]
[OmegaCompletePartialOrder β]
(c : Chain α)
:
@[simp]
theorem
OmegaCompletePartialOrder.Sum.ωSup_inr
{α : Type u}
{β : Type v}
[OmegaCompletePartialOrder α]
[OmegaCompletePartialOrder β]
(c : Chain β)
:
theorem
OmegaCompletePartialOrder.Sum.ωSup_projl
{α : Type u}
{β : Type v}
[OmegaCompletePartialOrder α]
[OmegaCompletePartialOrder β]
[Inhabited α]
(c : Chain (α ⊕ β))
: