Documentation

QuasiBorelSpaces.OmegaCompletePartialOrder.Fix

theorem OmegaCompletePartialOrder.iterate_le_succ {α : Type u_1} [OmegaCompletePartialOrder α] (f : α →𝒄 α) (x : α) (hx : x f x) (n : ) :
(⇑f)^[n] x (⇑f)^[n + 1] x
def OmegaCompletePartialOrder.Chain.iterate {α : Type u_1} [OmegaCompletePartialOrder α] (f : α →𝒄 α) (x : α) (hx : x f x) :

the sequence of iterates of a function

Equations
Instances For
    @[simp]
    theorem OmegaCompletePartialOrder.Chain.iterate_apply {α : Type u_1} [OmegaCompletePartialOrder α] (f : α →𝒄 α) (x : α) (hx : x f x) (n : ) :
    (iterate f x hx) n = (⇑f)^[n] x