Documentation

QuasiBorelSpaces.ENNReal

theorem QuasiBorelSpace.ENNReal.isHom_add {A : Type u_1} {x✝ : QuasiBorelSpace A} {f : AENNReal} (hf : IsHom f) {g : AENNReal} (hg : IsHom g) :
IsHom fun (x : A) => f x + g x
theorem QuasiBorelSpace.ENNReal.isHom_mul {A : Type u_1} {x✝ : QuasiBorelSpace A} {f : AENNReal} (hf : IsHom f) {g : AENNReal} (hg : IsHom g) :
IsHom fun (x : A) => f x * g x
theorem QuasiBorelSpace.ENNReal.isHom_iSup {A : Type u_1} {x✝ : QuasiBorelSpace A} {B : Type u_2} [Countable B] {f : ABENNReal} (hf : ∀ (b : B), IsHom fun (x : A) => f x b) :
IsHom fun (x : A) => ⨆ (i : B), f x i

ωQBS structure on ENNReal

Equations
  • One or more equations did not get rendered due to their size.