Documentation

QuasiBorelSpaces.OmegaQuasiBorelSpace

Omega quasi-borel spaces #

This file defines omega quasi-borel spaces (ωQBS), which combine QuasiBorelSpace and OmegaCompletePartialOrder structures with a compatibility axiom stating that pointwise ω-suprema of ω-chains of morphisms are morphisms (Definition 3.5 in [Vákár–Staton, 2019]).

We prove that products and coproducts preserve the ωQBS structure (Lemma 3.9).

See [VKS19].

Definitions #

Instances #

An ωQBS (Omega quasi-borel space) is a type equipped with both a QuasiBorelSpace and an OmegaCompletePartialOrder, satisfying the compatibility axiom: variables are closed under pointwise ω-suprema of ω-chains.

Instances

    Helpers #

    theorem QuasiBorelSpaces.OmegaQuasiBorelSpace.IsHom.congrArg {γ : Type u_1} [QuasiBorelSpace γ] {f g : γ} (h : ∀ (x : ), f x = g x) :

    congruence for IsHom: equal functions preserve IsHom

    theorem QuasiBorelSpaces.OmegaQuasiBorelSpace.IsHom.caseLeft {α : Type u} {γ : Type u_1} [QuasiBorelSpace α] [QuasiBorelSpace γ] {f : α γ} (hf : QuasiBorelSpace.IsHom f) (a₀ : α) :
    QuasiBorelSpace.IsHom fun (r : ) => match f r with | Sum.inl a => a | Sum.inr val => a₀

    extracting left component from sum variable with default

    theorem QuasiBorelSpaces.OmegaQuasiBorelSpace.IsHom.caseRight {α : Type u} {γ : Type u_1} [QuasiBorelSpace α] [QuasiBorelSpace γ] {f : α γ} (hf : QuasiBorelSpace.IsHom f) (b₀ : γ) :
    QuasiBorelSpace.IsHom fun (r : ) => match f r with | Sum.inr b => b | Sum.inl val => b₀

    extracting right component from sum variable with default

    pointwise supremum of a chain of QBS morphisms is a QBS morphism (also known as the "Compatibility Axiom" for the exponential to be an ωQBS)

    Product of omega quasi-borel spaces is again an omega quasi-borel space.

    Equations
    • One or more equations did not get rendered due to their size.

    Coproduct of omega quasi-borel spaces is again an omega quasi-borel space.

    Equations
    • One or more equations did not get rendered due to their size.