Documentation

QuasiBorelSpaces.SeparatesPoints

A QuasiBorelSpace separates points if any two elements are equal iff all morphism predicates agree on the elements.

This class is the QuasiBorelSpace analogue of MeasurableSingletonClass.

  • separates (x y : A) : (∀ (p : AProp), IsHom pp xp y)x = y

    Two elements are equal iff they agree for all morphism predicates.

Instances
    theorem QuasiBorelSpace.separatesPoints_def {A : Type u_1} [QuasiBorelSpace A] [SeparatesPoints A] {x y : A} (h : ∀ (p : AProp), IsHom pp xp y) :
    x = y
    instance QuasiBorelSpace.instSeparatesPointsForall {I : Type u_3} {P : IType u_4} [(i : I) → QuasiBorelSpace (P i)] [∀ (i : I), SeparatesPoints (P i)] :
    SeparatesPoints ((i : I) → P i)
    instance QuasiBorelSpace.instSeparatesPointsSigma {I : Type u_3} [Countable I] {P : IType u_4} [(i : I) → QuasiBorelSpace (P i)] [∀ (i : I), SeparatesPoints (P i)] :
    SeparatesPoints ((i : I) × P i)