Limits and pointwise ω-suprema for ωCPOs #
This file defines:
- Basic omega-limit operations
- Pointwise ω-suprema for function spaces needed in the compatibility axiom for ωQBS
def
OmegaCompletePartialOrder.omegaLimit
{α : Type u}
[OmegaCompletePartialOrder α]
(c : Chain α)
:
α
the omega-limit of a chain is its omega-supremum
Instances For
theorem
OmegaCompletePartialOrder.omegaLimit_isLUB
{α : Type u}
[OmegaCompletePartialOrder α]
(c : Chain α)
:
IsLUB (Set.range ⇑c) (omegaLimit c)
the omega-limit is a least upper bound
theorem
OmegaCompletePartialOrder.omegaLimit_unique
{α : Type u}
[OmegaCompletePartialOrder α]
(c : Chain α)
{l : α}
(hl : IsLUB (Set.range ⇑c) l)
:
the omega-limit is unique
def
OmegaCompletePartialOrder.evalOrderHom
{ι : Type u}
{α : Type v}
[OmegaCompletePartialOrder α]
(x : ι)
:
evaluation at a point as an order homomorphism
Equations
- OmegaCompletePartialOrder.evalOrderHom x = { toFun := fun (f : ι → α) => f x, monotone' := ⋯ }
Instances For
@[simp]
theorem
OmegaCompletePartialOrder.evalOrderHom_apply
{ι : Type u}
{α : Type v}
[OmegaCompletePartialOrder α]
(x : ι)
(f : ι → α)
:
theorem
OmegaCompletePartialOrder.ωSup_eval
{ι : Type u}
{α : Type v}
[OmegaCompletePartialOrder α]
(c : Chain (ι → α))
(x : ι)
:
pointwise omega-supremum: the omega-supremum of a chain of functions is the function that takes omega-supremum pointwise