Documentation

QuasiBorelSpaces.OmegaCompletePartialOrder.Limit

Limits and pointwise ω-suprema for ωCPOs #

This file defines:

the omega-limit of a chain is its omega-supremum

Equations
Instances For

    the omega-limit is a least upper bound

    theorem OmegaCompletePartialOrder.omegaLimit_unique {α : Type u} [OmegaCompletePartialOrder α] (c : Chain α) {l : α} (hl : IsLUB (Set.range c) l) :

    the omega-limit is unique

    def OmegaCompletePartialOrder.evalOrderHom {ι : Type u} {α : Type v} [OmegaCompletePartialOrder α] (x : ι) :
    (ια) →o α

    evaluation at a point as an order homomorphism

    Equations
    Instances For
      @[simp]
      theorem OmegaCompletePartialOrder.evalOrderHom_apply {ι : Type u} {α : Type v} [OmegaCompletePartialOrder α] (x : ι) (f : ια) :
      (evalOrderHom x) f = f x
      theorem OmegaCompletePartialOrder.ωSup_eval {ι : Type u} {α : Type v} [OmegaCompletePartialOrder α] (c : Chain (ια)) (x : ι) :

      pointwise omega-supremum: the omega-supremum of a chain of functions is the function that takes omega-supremum pointwise