Documentation

QuasiBorelSpaces.OmegaCompletePartialOrder.Chain.Sigma

def OmegaCompletePartialOrder.Chain.Sigma.inj {I : Type u_1} {P : IType u_2} [(i : I) → Preorder (P i)] {i : I} (c : Chain (P i)) :
Chain ((i : I) × P i)

Injects a chain into a chain of coproducts.

Equations
Instances For
    @[simp]
    theorem OmegaCompletePartialOrder.Chain.Sigma.inj_coe {I : Type u_1} {P : IType u_2} [(i : I) → Preorder (P i)] {i : I} (c : Chain (P i)) (n : ) :
    (inj c) n = i, c n
    def OmegaCompletePartialOrder.Chain.Sigma.distrib {I : Type u_1} {P : IType u_2} [(i : I) → Preorder (P i)] (c : Chain ((i : I) × P i)) :
    (i : I) × Chain (P i)

    Converts a chain of coproducts into a coproduct of chains.

    Equations
    Instances For
      @[simp]
      theorem OmegaCompletePartialOrder.Chain.Sigma.distrib_inj {I : Type u_1} {P : IType u_2} [(i : I) → Preorder (P i)] {i : I} (c : Chain (P i)) :
      @[simp]
      theorem OmegaCompletePartialOrder.Chain.Sigma.inj_distrib {I : Type u_1} {P : IType u_2} [(i : I) → Preorder (P i)] (c : Chain (Sigma P)) :
      theorem OmegaCompletePartialOrder.Chain.Sigma.distrib_cases {I : Type u_1} {P : IType u_2} [(i : I) → Preorder (P i)] {p : Chain ((i : I) × P i)Prop} (mk : ∀ {i : I} (c : Chain (P i)), p (inj c)) (c : Chain ((i : I) × P i)) :
      p c