Documentation

QuasiBorelSpaces.IsHomDiagonal

The class of QuasiBorelSpaces where equality is a morphism.

  • isHom_eq : IsHom fun (x : A × A) => x.1 = x.2

    Equality is a morphism.

Instances
    theorem QuasiBorelSpace.isHom_eq' {A : Type u_1} [QuasiBorelSpace A] {B : Type u_2} [QuasiBorelSpace B] [IsHomDiagonal B] {f g : AB} (hf : IsHom f) (hg : IsHom g) :
    IsHom fun (x : A) => f x = g x