Documentation

Std.Data.Iterators.Lemmas.Combinators.Monadic.DropWhile

theorem Std.Iterators.IterM.Intermediate.dropWhileM_eq_dropWhileWithPostcondition {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [Iterator α m β] {it : IterM m β} {P : βm (ULift Bool)} {dropping : Bool} :
theorem Std.Iterators.IterM.Intermediate.dropWhile_eq_dropWhileM {dropping : Bool} {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [Iterator α m β] {it : IterM m β} {P : βBool} :
dropWhile P dropping it = dropWhileM (pure ULift.up P) dropping it
theorem Std.Iterators.IterM.dropWhileM_eq_intermediateDropWhileM {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [Iterator α m β] {it : IterM m β} {P : βm (ULift Bool)} :
theorem Std.Iterators.IterM.dropWhile_eq_intermediateDropWhile {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [Iterator α m β] {it : IterM m β} {P : βBool} :
theorem Std.Iterators.IterM.step_intermediateDropWhileWithPostcondition {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [Iterator α m β] {it : IterM m β} {P : βPostconditionT m (ULift Bool)} {dropping : Bool} :
theorem Std.Iterators.IterM.step_dropWhileWithPostcondition {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [Iterator α m β] {it : IterM m β} {P : βPostconditionT m (ULift Bool)} :
theorem Std.Iterators.IterM.step_intermediateDropWhileM {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [LawfulMonad m] [Iterator α m β] {it : IterM m β} {P : βm (ULift Bool)} {dropping : Bool} :
(Intermediate.dropWhileM P dropping it).step = do let __do_liftit.step match __do_lift.inflate with | IterStep.yield it' out, h => if h' : dropping = true then do let __do_liftP out match __do_lift with | { down := true } => pure (Shrink.deflate (PlausibleIterStep.skip (Intermediate.dropWhileM P true it') )) | { down := false } => pure (Shrink.deflate (PlausibleIterStep.yield (Intermediate.dropWhileM P false it') out )) else pure (Shrink.deflate (PlausibleIterStep.yield (Intermediate.dropWhileM P false it') out )) | IterStep.skip it', h => pure (Shrink.deflate (PlausibleIterStep.skip (Intermediate.dropWhileM P dropping it') )) | IterStep.done, h => pure (Shrink.deflate (PlausibleIterStep.done ))
theorem Std.Iterators.IterM.step_dropWhileM {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [LawfulMonad m] [Iterator α m β] {it : IterM m β} {P : βm (ULift Bool)} :
(dropWhileM P it).step = do let __do_liftit.step match __do_lift.inflate with | IterStep.yield it' out, h => do let __do_liftP out match __do_lift with | { down := true } => pure (Shrink.deflate (PlausibleIterStep.skip (Intermediate.dropWhileM P true it') )) | { down := false } => pure (Shrink.deflate (PlausibleIterStep.yield (Intermediate.dropWhileM P false it') out )) | IterStep.skip it', h => pure (Shrink.deflate (PlausibleIterStep.skip (Intermediate.dropWhileM P true it') )) | IterStep.done, h => pure (Shrink.deflate (PlausibleIterStep.done ))
theorem Std.Iterators.IterM.step_intermediateDropWhile {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [LawfulMonad m] [Iterator α m β] {it : IterM m β} {P : βBool} {dropping : Bool} :
theorem Std.Iterators.IterM.step_dropWhile {α : Type u_1} {m : Type u_1 → Type u_2} {β : Type u_1} [Monad m] [LawfulMonad m] [Iterator α m β] {it : IterM m β} {P : βBool} :